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'INTRODUCTION

This is the last of several'* reports which conceptually go
beyond the usual practical treatments of K, in the theoretical
applied mechanics literature. That literature consists of
derivations of a K, or other single associated measure (COD), for
each of many configurations of cracked material and loading such
that evaluation of the appropriate formula to any test under K
conditions gives the same toughness value as would a similar test
of any other configuration of the same material. This is
consistent with the notion that toughness is a unique fundamental
property of materials, one not made up of simple fundamental
quantities such as fracture stress or work hardening modulus.
Here, however, K, toughness is not considered basic but dependent
on two metallurgically controllable parameters, the tensile
brittle fracture stress ahd a postulated strain parameter, the
effective crack tip radius existing at the K, fracture load
stress; this, in turn, is considered to be dependent on
metallurgy, e.g., sulfur content, as well as the K, loading
stress. The reports describe how to determine the fracture
stress and the radius from K, tests using a postulated fracture
criterion characteristic of the material and a curve derived from
the solution for the state of stress in the yielded region of a
short elliptically shaped flat crack lying across the center of a

plate under uniform tensile loading. Here a more exact solution




supplants the approximate ones used previously and it is shown
that radius determihations remain unchanged although fracture
stress determinations are 75% as large. The state of application
and advantages of the fracture stress approach over the energy

approach are discussed.

The title of this report was first used on a report‘ issued
in October 1978; for comparison that report shall be called the
First Report. It was a "how to" report based upon a curve
obtained by an approximate analysis employing elasticity shear
stress trajectories with the hope that the analysis would soon be
followed’ by a more exacﬁ finite element one *%. The latter was
expected to apply, not only to the crack problem, but to evaluate
the approximate type of analysis f»or the crack and other stress

concentration problems where the yield point was locally exceeded

and for which an exact analysis was difficult to achieve.

A careful, time consuming finite element analysis was
finally made in 1984 by Colin E. Freese and Dennis M. Tracéy
largely in answer to the above expectation’™’. It is the one used
in this report, is considered very good (the best available), and
contains a surprising limiting stress result. However, it leaves
some. important questions unanswered: whether the stress is

maximum just off the center line of the crack, as found by the

.nwufollovedbyamfnkchnundemMnlyﬁHbyAmeohynﬁiMmS.b). The cxperimental results were
very satisfactory, but & was evident that a finer grid would be accessary for precise finite clement results.
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approximate method (a distance too small for the finite elements
used) and whether it is appropriate, even near the crack tip, to
compare the approximation which was based upon the uniform
biaxial loading used by fracture mechanics pioneers, following
Griffith'""?, with the uniaxial tension loading used by Freese and
Tracey. The delay in publishing the present analysis was largely
due to the expectation that time could have been found for

definitive answers to such questions.

The approach here to crack toughness or brittleness is not
an energy approach but a tensile brittle fracture stress™
approach (Fig.l1l). Using shear stress trajectories (Fig. 2), the
maximum tensile stress, S, for loading stress S, is computed from
Sa = Y (1 + A) where Y is the plane strain yield strength and 4
is the largest angle change found among all the principal shear
stress trajectories crossing the yield region at the crack tip.
Thus, this stress is ahead of the crack and increases with the
amount of yielding; hence, load; if it equals the brittle
fracture stress, F, of the material, failure occurs. The strain
where the trajectory corresponding to A crosses the yield region
is small; hence, work hardening is negligible, and since the
trajectory is far from the crack tip with any appreciable 4, the
gxact shape of the tip is of limited importance; the radius of

the tip found from the analysis, whatever its origin, is an

effective radius.




The finite element solution is based upon a crack tip radius
of p = 0.001, taking half the crack length as the unit of
distance, and was applied to other cases thréugh dimensionless
ratios. For that solution, the dimensionless ratio 4 was
computed by equating Y (1 + 4) to the maximum stress

corresponding to an applied loading stress. Y, the plane strain

yield strength, was taken to be 2x10%//3.

FINITE ELEMENT DATA AND MATCHING FORMULAE
Our notation and definitions are contained in Table I.
The finite element program models a long flat tensile
specimen which is loaded uniformly at the ends and is pierced by

a central crack of length 2a across its middle.

For present use, Freese supplied the unsmoothed finite
element method results, as well as L, M, and A directly computed
from it, by Table II. The L and M versus 4 data is used to
determine fracture stress F, and effective crack tip radius, p,
from appropriate (pressure free crack surface)‘experimental K., Y

(toughness, yield strength) data.




TABLE I
NONEMCLATURE AND BASIC RELATIONS

crack length/2

0.001 = crack tip radius in Table II

Y, = Tensile test yield strength = 10’ ksi in Table II

2Y,/J/3 = Plane strain yield strength, the yield
strength used in all analyses in this report.

The uniform tensile loading stress
Distance from crack tip to point of maximum stress, S,

Maximum stress ahead of crack at loading stress S,
i.e., stress at x.

Tensile stress needed to cause fracture; here the nil-
ductility tensile fracture stress.

S, = F under K, test conditions.

Maximum shear stress trajectory angle change;
S, = Y(1 + 4)

Y/ S/ap
Y/rp/K, a dimensionless parameter

3.65148/S in Table II; at initial yielding L = 2

Sy/na here, = K, toughness under K, test conditions

L/x/p = (Y/K)/xx, by definition.
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MATCHING FORMULAE
The following L and M formulae are selected from the many
that were devised to match and smooth the L’ and M data tabulated

in Table II and shown in Figures 3 through 5.

With F = Y(1+4A) for no pressure on crack faces,

1 1.46
zY,/ = ; 0sA<1.11
L( KP/K) 1.29 In A+0.12
1 1.46
= 1n when F=Y(1+A
1.29 S,/Y-0.88 ( )

M(=L/x/p = Y/xx/K) Lisinh [(8/3) A] /2}*

Li{sinh[(8/3) (S,/Y-1)]1/2)%

L maximum is 2, and goes precipitately to effectively zero at

A=1.11, 0sA<1.11
x/p maximum is 5, 0sx/p<5

S,/ Y maximum is = 2.11Y

Considering the validity of data, etc., we actually use the formula for L to & = 1.11 = 10/9, where, in fact L scems to sharply drop to zero;
to approximatcly sce this drop, multiply the L formuls by R={1-(84/9)*F*. The Tables for L vs. & of the First Rcport may be uscd in place of the above
L vs. A formula if the 4°s are multiplicd by 3/4; sce L vs 4, p. 17.




If there is plane strain pressure, P, on the crack faces!?,

S, = Y(1+4)-P.

The data is not precise below 4 = 0.25, say, a caution,
especially for those who use the data directly rather than

through the formulae.

BRITTLE (NIL-DUCTILITY) TENSILE FRACTURE S8TRESS,

EFFECTIVE RADIUS, YIELD STRENGTH

FRACTURE STRESS

If the tensile test temperature of a structural metal is
lowered sufficiently the metal is found to break with little or
no ductility. This stress is our fracture stress, F, if there
has been slight straining, but not necessarily if the temperature
is so iow that there is no strain for there is evidence in at
least some cases, that a completely undeformed specimen requires_
a higher stress for fracture than a slightly deférmed one. In
our case the greatest stress lies on the border of deformed
material beyond the front of the crack. See Figure 6, where,
assuming uniform yielding, F is about 60 ksi and high strain rate

takes the place of low temperature.

F is of course, a macroscopic brittle, essentially nil-

ductility tensile fracture stress, not the theoretical fracture
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stress of a homogeneous flawless material; the theoretical stress
is presumably reduced to it by heterogeneity, flaws or

inclusions.
For our conception of fracture stress see Fig. 7.

In the next section on use of the finite element data, we
assume that for certain ranges of data that a linear fracture
stress law may be used, i.e., Y = (1 + B)Y + £, where § and f are

constants.

For the high strength steels with which he was familiar, the
author observed, or inferred, that for tests at low to moderate
temperatures covering practical ranges of brittle failure, that
when the temperature of the tests alone was varied F = £, a
constant’, and that when the tempering temperature of the test
specimens alone was varied F = Y + £, i.e., the fracture stress
was a constant amount above the yield strength, Y. These
relations.he generalized into a linear fracture stress "law"
which he assumed suitable for the range of stress involved in the

K, determinations of p and F, i.e.,

F=(1+8) Y+ ¢

.Aecadiglymewrimobaewedmfﬂhuhgwoccumdwmmeyidd strength was raised by low temperature operation so that the
concentrated yicld strength equalicd F, the fracture strength of the material of which they were made. (See Discussion)
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Thus 8 = -1 for the varied test temperature tests above and

B = 0 for the varied tempering temperature tests, above.

RADIUS

In the usual small deformation elastic solution
corresponding to a flat elliptical notch in a tension field, the
tip radius increases, in proportion to the load, depending on the
modulus of elasticity, E; this is likewise the case for the non-
cyclic loading elastic-plastic solution except that the
proportion depends on the amount of yielding and thus on the
yield strength and, to a more limited extent, on the work
hardening modulus. The point here is that there is a unique
radius for each load; the metallurgically dependent radii we have

postulated do not exist for that fixed geometry.

But our deductions of radii, based on the curve fitting
methods described in the next section are evidence that a change
dbes take place at the very highly stressed tip, that we get

radii other than above.

And, Taggart®, fitting a parabola to the deflection of crack
boundaries near the tip, found an increase in p with K, an
increase to K, load. The increase was not the same for different

materials, as it would be if the crack tip radius increased

10



uniquely with load for a given Y (and work hardening modulus, if

large).

Thus, although F varies with Y, it is assumed in the
analysis for p below, that p remains the same in any two ordinary
test conditions for K, unless the fracture shows a change such
as, e.g., the appearance of cleavage fracture in the one test but

not the other.

Theoretically, if not practically, according to the
definitions of L and M, x the distance to the point of maximum
stress along the crack axis could have been chosen instead of p

as one of our crack characterization parameters.

IELD STRENGTH

Perhaps this is as good a place as any to point out that a
likely source of error is the use of conventional determinations
of yield strength in our formulae. .Our yield strength should be
that of completely yielded material such as that determined by
cyclic tests, even if the yielding is small. The conventional
determinations are generally too high'*®; a particularly bad case
is that of mild steel in which even the lower yield point
represents non-uniform yielding, where the first yield is that of
a slip band at an enormous rate of strain [ (specimen length/slip

band width) x nominal strain rate]. It is arguable that the

11



endurance limit stress is the proper one; taking the yield
strength to be half the tensile strength may be acceptable in

some cases.

The fracture stress may be little above the apparent yield

strength, but substantially above the actual yield strength.

USE OF THE FINITE ELEMENT DATA

MODE I STANDARD TEST K, DATA

The object here is to determine F and p from K, data

obtained with pressure free crack faces. If only L (= Yywp/K;.)

is known for two or more cases, L must be supplemented by other
information such as an appropriate fracture law, here taken to be
F=(1+8) Y + £, and assumptions supported by metallurgy and
fractography of constancy of p and F in the range of data used in

the determiqation.

Examples will be found in the First Report from which we
have drawn Fig. 8. From this we note how well F and p
determinations correspond to the experimental data as well as the
effect of Sulfur level on the radius. Four cases are cited here,
defined by what is used and constant (C = constant) in the range

considered.

12




M with L

F and p can be determined from the equations for L and M if
x can be measured or inferred, e.g., from ripples which might
result from successive fracturing and opening to the crack tip,
especially if the incipient fracture is just off the center line
of the crack, x being the distance from the tip of the crack to
the site of incipient fracture. x may be of the order of one to

five thousandths of an inch.

Thus in M we would have an expression in which all
quantities except F are known; thus M determines F. Insertion of
this F into L is an expression for p. A hand held computer which

is programmable is handy for this.

L, 8 =-1, C(p,F)

For § = -1, corresponding to constant F at different test
temperatures, F = £, a constant though Y changes. (See Fig. 9).
Assuming F and p are the same for two data points, Y, K., two
simultaneous equations may be formed and solved for F and p since
each insertion of a data point Y, K, into the expression for L
provides an equation. Obviously, different combinations of data

points may be used to check a result.

13




IO, ﬂ = o' c(plf)

For B8 = 0, corresponding to tests at different tempering
temperatures, F = Y + £ where f is a constant and Y changes. (See
Fig. 8) Since we assume p = constant (subject to constancy of
existence of the weakest kind of fracture, e.g., grain boundary

fracture).

L=Y/mnp/K = function (F/Y)

we have for two data points:

Y,/rp/K, = function(1+£/Y,)
and
Y,/np/K, = function (1+£/Y,)

These may be solved simultaneously to find f and p.

L, 8, C (p, F) and L, C (p, £)

The scatter in experimentally determined values of K is

often so pronounced that a curve fitting procedure using

transparent overlay graphs and involving more K., Y values is

14




recommended, as described in the First Report and repeated, in

part, in Appendix I - Overlays. (See Figs. 10-12.)

It will be recognized by some that this overlay procedure
can be done very readily on a computer; for example, following
the procedure of K, versus Y for various tempering temperatures
of steel for which § = 0, plot 1ln (1/4AL) versus 1ln (1/4) from the
equation for L versus A, the overlay, and separately, plot the K
versus Y data as 1ln K versus 1ln Y. Move the latter plot of
points, along with its coordinates, parallel to the coordinates
of the 1n (1/AL) versus 1ln (1/4) plot until the points fit the
curve of the latter plot. Then f, a constant, is that coordinate

value of Y where the 1ln Y coordinate is crossed by the unit
vertical coordinate of the overlay and, similarly, f/np, a

constant, is that coordinate value of K where the 1ln K coordinate

is crossed by the unit horizontal coordinate of the overlay.

Then F = Y + £ where Y is any Y and’ p is (fy/®xp)?/nf2.

Generally, a master reusable 1ln ln plot of [1/(4-B)L] versus
(1/(4-B)] is made on transparent ln 1ln paper as a bank of 8
constant curves; this overlay is placed over any particular plot
of K, Y data on the same size of 1ln 1ln paper as the transparency
and slid parallel to the coordinates to the f§ curve which best

matches the data; this determines 8 and, simultaneously, f and p;

[ ]
From expericace it is scldom worthwhile to allow for the elastic change in o as is done in the First Report.

15




f is that coordinate value of Y where the Y coordinate is crossed
by the unit vertical coordinate of the overlay and f/mp is that

coordinate value of K where the K coordinate is crossed by the

unit horizontal coordinate of the overlay.

HYDROSTATIC PRESSURE MODIFICATION OF K,

K, formulae obtained by energy methods are independent of
hydrostatic pressure!'. This particular consequence may be
justified by the belief that there is always an infinite stress

singularity at the tip of the crack.

Here, however, it is believed that for metallic materials of
construction, at least, there is an effective crack tip radius at
any load; that consequently all stresses are finite and reduced
by the addition of hydrostatic pressure; that K, failure will
occur if the largest stress equals the tensile brittle fracture

stress, F, of the material.

Thus we now consider how to modify K, determinations to make
them applicable to the case where there is uniform pressure on
the crack surface, a pressure that might be applied by

superimposing on the standard loading a hydrostatic pressure.

16




A plot of L vs. A for a crack in a distant field of uniform
tension S* is a plot of [(S/Y) (a/p)%]™* vs. 4 where if S/Y and
a/p are known one finds 4. The addition of a plane hydrostatic™
pressure P does not change the yielded areas, their boundaries or
the geometry; it only makes the size slightly and negligibly
smaller. It does not affect the yield boundaries of the lobes of
yielded regions at the tips of the crack; therefore 4 is not
changed. P, however, is added (negatively) to every component of
normal stress, including boundary loading stress, S, but we still
think of the boundary loading stress (S - P) as made up of its
two components since only S controls 4; L in L vs. A does not
contain P; it is still [(S/Y) (a/p)*]~'. Though 4 is unchanged it

is used to determine S_,; if there is no P, we have S, = Y(1 + 4)
but if there is an addition of hydrostatic pressure P, as

L1

described™ above, S, = Y(1 + 4)-P.

Thus without P, 4 = S,/Y - 1 and with P, 4 = (S, + P)/Y - 1

although K is independent of P in L=Y/np/Syrna=Y/np/K.

.mﬂtiﬂ'lhule.hue@ivdeufot-idulcncklohweofuhx'nlmionpapeudicuhrwmecmk.

e
Obviously, the original loading could have been in the crack instead of applicd exterally in which case P (if P was the loading) would be in L
instcad of S. We choose the cxtemal case here because it is the case for which K, measurements are made.

L

‘.Aecaﬂigmheqliﬁbrine@lim, for a material where it undergocs a constant yielding stress ., Y, A corresponds to an increase & Y
over the magnitude of the principal stresses st the crack side of the boundary of the yiclded region (lobe boundary) by the corresponding stresses located by
following a principal shear stress trajectory, on the other side. Thus, the magnitude of & principal stress (Y - P) on the crack side becomes (Y - P) + AY =
Y(1 + 4)-P for a corvesponding one on the other side as the difference in directions is 4. This is the same, of course, as increasing the original S, stress,
Y(1 + 4) by the hydrostatic stress -P.

17




Obviously, if S, = F, a material constant, 4 is greater on

the L vs. 4 plot with P than without P.

Thus, a knowledge of F and p found from a standard test
specimen K, can be used to determine what ‘K.’ value should be

used if there is known internal pressure P: 4 = (F + P)/Y -1,
this determines L; then K, = Yy/xp/L, calling K, the critical

‘K.’ with pressure, a quantity larger than K.

With guns, |P| = S, so there is no external loading stress,

only an internal pressure (S).

QUANTITATIVE RELATIONSHIP BETWEEN THE FINITE ELEMENT

AND FIRST REPORT RESULTS

L versus A

A comparison of the data for the basic L versus A curve of
the First Report and the present Freese-Tracey finite element
data indicates to possibly 95% accuracy that for any specified
value of L, and thus any combination of Y, K, and p making up
that value of L, in either source,

& = (3/4)4

where the subscript "1" stands for the First Report.’

* Thus the L vs 4 Tables of the First Report may be used to & cut-off if the tabulsted 4°s are multiplied by 3/4.
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Since, also

F=Y(1l + 4)

F, = Y, (1 + 4))

we have
F/Y =1 = (3/4) (F/Y, -1)
where L = YWnp/K;. = Y, /%p,/ Ky,

In particular, if Y = Y,, so that it is also necessary that

vo/Ky = \/B:/chz'

F-Y=(3/4)(F,-Y)

which may be rewritten for different insight as

]
"

Y+ (3/4) (F,-Y)

]
"

3/4 F, + Y/4

F=F - (F -Y)/4

19




F=(148)Y+ £ vs. &

Next, we note how the linear fracture stress laws compare,

also using F = Y(1+4) and F, = Y, (1+4,).

Since we wish the consequence of a particular assigned value
of B in either case, B = B,; in designating B we are thus

defining F in terms of Y and f:

F= (1+B)Y+f

F, = (1+ B )Y, +f,

We note the result of elimination of 8 from these as well as

two cases of special interest, § = 0 and § = -1.

By elimination of f8
£f/Y-£,/Y, = (F/Y-1) - (F,/Y,-1)

whence, since F = Y(1 + 4) and F, = Y, (1+4)),

£/Y-£,/Y, = A-4&,

and thus if Y = Y,,

20




£-f, = Y(A-4,)

where we can substitute for the angles their expressions in L.

For 8 = 0, with Y, = ¥:

F=Y+f, soF/Y-1 =4 = f/Y

F, =Y+f,, so F,/Y,-1 = 4, = £,/Y

& = (3/4) &,; ~ £/Y = (3/4) (£,/Y)
i.e., £ =(3/4) 1

We noted in L vs. 4 that 4 = (3/4)4, used here, was for

equality of L’s in the expressions for 4 vs. L.

Thus,
P = P

since we assume Y = Y, and K, = K, in the expression for L.

See Figure 11, the B8 = 0 overlay for the First Report, on
which new axes have been added making it valid for the new finite
element data A = (3/4)4,; these axes are displaced downwards and

to the left by 1ln (3/4) from the old ones; this follows from the

21




fact that on 1ln 1ln paper the old coordinates are 1/4,L vs 1/4,

while the new ones are 1/([(3/4)4, L] vs. 1/(3/4) 4,, i.e.,

on 1ln 1ln paper we have 1ln (1/4,L) -1n(3/4) vs. 1n1/4, - In(3/4).

For 8§ = -1 the strength law gives

From this because 4 = (3/4) 4, we have for Y = Y,,

F/Y-1 = (3/4) (F,/Y-1)

i.e.,

F=(3/4)F, +Y/4

as was expressed above under L vs. 4, although the strength law
is designed to make F independent of change in Y for § = -1. The

consequences are discussed below.

Using the First Report data, if one found F and p for 8 = -1
by precisely matching experimental observations of K, and Y, one
could not get a precise match for F and p using the new data for

B
B = -1, would change to 8 = -3/4:

-1; one would have to change 8 to get a match; in this case,
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1. 1 - 1
&-P (3/4Y4,+3/4  3/4(4,+1)

where the second expression is, of course A + 3/4. On 1ln paper
the 3/4 is simply a translation movement; no change in shape
takes place. But this is not the desired match for § = -1 for
the finite element solution if the match was made for 8 = -1 for

the First Report.

Thus, believing in the utility of the 8§ = -1, i.e., F = £,
independent of Y result for tests at various test temperatures,
we conclude that there was not an exact correlation for 8 = -1

tests in the First Report, though a useful one.

What we find is that a very satisfactory correlation, a
satisfactory match for the useful range of data, exists between
the 8 = -1 ovérlays for the new and old data, that is the
overlays whose axes intercepts on the 1ln 1ln plot of K, vs. Y
determine F and p. For the First Report the overlay is a 1ln 1ln

plot of 1/[(4,+1)L] vs. 1/(4,+1); for the new work it is
1/[(0.754,+1)L] vs. 1/(0.754,+1), since 4 =0.754,. These two

plots match quite well if the horizontal axis of the latter is
displaced to 1ln 0.935 downwards and the vertical axis is
displaced leftwards to ln 0.855, of the original First Report

axis.
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These new axes are shown in Figure 12.

The intercepts determining F and p are displaced the same

amount.
Thus,
F = 0.855F,
and
F/mp = 0.935 F,/up;
i.e.,

0.855F,/%p = 0.935F, /7p,;

p = 1.196 p,

DISCUSSION AND CONCLUSIONS

Before taking the Freese -~ Tracey data as definitive and
comparing it with those of the First Report, it should be pointed

out that the maximum stress reported in the First Report was not
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on the center’ line of the crack but just to one side of it
(except for initial yielding) while the maximum stress reported
by Freese - Tracey was on the center line; the grid used was too
coarse to make such a distinction. It should also be pointed out
that Freese - Tracey data is scattered for small degrees of
vielding, and equal stress loading along and perpendicular to the
crack was used in the First Report and simple tension in the
Freese - Tracey case (a difference possibly of consequence if
yielding is relatively extensive). The shear case was solved
(not published) by the method of the First Report and showed no
concentration of stress; a result which seems to conform with
experiment, thus, the method is of interest in considering the

above points.

Except for a sort of scaling factor, correlations of K., Y
data to find F and p by Freese - Tracey and the First Report are
practically equivalent. Thus, to use the excellent correlations
in the examples of the First Report, one only need to change for

B =0, £= (3/4)f, p = p, and for § = -1, F = .855 F,,

P 1.196 p, where the """ refers to the First Report results.
However, there is a very important difference in the two
sets of data: there is an upper limit to 4 found by the finite
element approach, 4 = 1.125, corresponding to a limiting distance
of yielding ahead of the crack of x/p = 5. This angle means that

the greatest stress there can be in this basic crack problem is

25




(1 + 4) Y = 2.11Y; this is less than the (1 + 7/2)Y of the slip
line theory for the straight line crack and much less than might

be expected from the First Report.

wWhat this means in practice is that if the fracture stress
of the material, F, is greater than 2.11Y, no K, crack failure

will occur.

This kind of limitation, a characterization which seems very
important in practice, is even stronger than was anticipated by
former analyses, if not by experiment or practice. As an
example, for some pieces of ordnance equipment, the fracture
stress F of the material of which it was made was flat over the
temperature range of its possible employment; when the equipment
was used (i.e., loaded) at its normal'température of operation
there was no brittle K, failure, but when the equipment was
loaded at a reduced temperature, Y became sufficiently gfeat for
brittle K, failure to occur. The factor of concentration was

F/Y; i.e., (1 + A) See Figure 9.

Obviously, the fracture stress’ of the material, F, should
be found by separate experiment if possible. Also, as far as is
known, the two physical quantities F and p are metallurgically

independent. If this is so, the metallurgist has two fabrication

.Mmceminmhilcemhmfwwhkhﬂﬁlfﬁ':mﬁmwdmﬁywmwhﬂuﬁghisfmhﬁm. It is doubted that K failure
valucs for structural metals have been appropristely studicd for comparison or othcrwise in the state in which they are macroscopically brittle, i.c., well below
the transition temperature, a state usually avoided in practice, but having some uscs.
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options for attaining a suitable K,. There is evidence in the
First Report that p is dependent upon structure and sulfur (see
the First Report). If F, p (possibly machined in) and Y are

specified K can be found from L = f(4), i.e.,

YWRp/K=£(F/Y-1) .

In the case of the example above, the brittle fracture
stress could be inferred since a temperature low enough for
brittle fracture to occur in a simple tension test could be
attained using available coolants such as liquid nitrogen. This
is the case for some other materials such as mild steel and
tungsten (see Figure 6), which illustrates stress-strain curves
with their fracture envelopes. Many such curves were drawn to
represent the results of many tests on steel at this laboratory.
The "nil ductility" brittle fracture stress is considered to be
almost nil ductility since it is possible that a test under
hydrostatic tension on virgin material would yield a higher value
corresponding to a microstructure unaltered by plastic straining;
this, if true, is of no concern here because the present model

presumes yielding and fracture at the boundary of plasticity.

Other attempts to determine fracture stress have been

inconclusive because they are unfinished. They are:
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. Attempt to use certain notch geometries in tension

tests with partial yielding.

L Attempt to put uniform exterior tension loading on a
plate containing a hole; the reason for using this
arrangement is that with it there is a maximum stress
which occurs at the boundary of the plastic region
(which extends outward from the bore) and which for
sufficient load may cause rupture. Since this
experiment was difficult to carry out, the same thing
was at least partially achieved during many trials by
pressing a ball about a quarter of an inch in diameter
onto the top side of approximately one inch square
plates supported circularly near their outer edges and
pierced with a 0.01° inch diameter hole. The behavior
was observed on a television screen which picked up the

view of a microscope focussed on the bottom side.

) Attempt to use the Fyfe exploding wire technique at the
University of Washington through contracts. Here a
coated wire in the bore of a cylinder of an inch or
less in diameter is exploded by the controlled
electrical discharge of electricity stored in a

condenser bank. It was easy and very inexpensive to

L]
Once, the 0.01 inch holc expanded 0 3/16 inch diamcter before failure, a straim of 1275%.
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cause controlled subsurface (to the hole). rupture;
i.e., complete or ineomplete rupture. Thus, an effect
_of anisotropy could be seen. This was better, for
purposes of this report than plate-slap experiments
partly because rupture was not preceded by an enormous
deforming compression of the material being tested
before a tension wave caused rupture. There was a very
important quantitative question, however, about the
magnitude of the pressure generated, as well as a
question of whether important high strength materials
could be broken. Unfortunately, these questions could

not be answered before the work was terminated.

In the above cases a fracture stress is determined from a
multi-directional stress system resembling that of the loaded
crack. Thus the necessity of a failure concept for use of a

uniaxially determined fracture stress is largely avoided.

In the case of the unpressurized crack or notch deformed in
plane strain, there is a stress Y + YA acting perpendicularly to
the crack axis which we have associated with the brittle uniaxial
tension test, and a stress YA along the axis. Fracture openings
(preventing crack growth) have occurred across this lesser
stress, the material involved being much weaker in its direction

than in that of the major stress.
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In summary this study relies for fracture on the macroscopic
stress found to give almost nil ductility in the tension test.
It is important to note that creep or other rate effects may
occur at the tip of the crack and, since the region to the point,
x, of largest stress is so very small and has yielded, that the
fracture stress is environmentally sensitive; thus progressive
cracking is to be expected depending on contaminants and the
diffusion rate of hydrogen in the yielded region. The
theoretical fracture stress used by Griffith is estimated to be
reached microscopically at internal flaws but strengths and
failures at these individual flaws are not representative of the
macroscopic crack strength where failure covers many grains. The
situation is somewhat analogous to that where it may be desired
to determine the tensile fracture strength of a structural
component, a plate pierced by many holes or irregularities, a
case where one measures the strength by dividing the breaking
load of the plate by its nominal cross-sectional area,

independently of phenomena occurring at individual holes.

Here as the load is increased there is a gentle transition
of the largest stress S, from being proportional to the load to
being less responsive to it as the point of largest stress, x;
moves increasingly sub-surface and finally not responsive to the
load at all when the stress reaches 2.11Y and x = 5p. If S, does
reach 2.11Y < F, a marked transition occurs since from this point

on only ductile separation can occur; the crack opens up and the
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yield region changes. If S, does equal F after the yield point
is reached brittle fracture occurs. The failure of a Chafpy Bar
is somewhat similar: above the transition temperature
corresponding to complete yielding below the notch the separation
surfaces open into a wide V of fixed angle which continues until
final separation occurs; below the transition temperature the

separation surfaces remain almost closed during fracture.

According to the model used in this study, plastic lobes at
the crack tip along with their shear stress trajectories give
rise to the maximum stress and they move as cracking proceeds.
Work is done on their creation and some of it is given back in
movement; this loss must be supplied by the loading. Our old
attempts to calculate these lobe generating energies and losses
were not completed to our satisfaction; questions involving
inelastic behavior remain. For a finite element treatment see

reference 5.

An addition of hydrostatic pressure reduces all stresses and
thus the proximity of breakage on the stress approach to K;
failure although the formulae for K,, which may be derived from
energy considerations, are independent of this effect; it is the
value for K, that differs with different materials; and in view
of the stress reducing effect of hydrostatic pressure, the value

found from standard tests using specimens with stress free crack
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faces are not applicable to pressurized crack faces. We show how

to modify the standard values to K,, values which are applicable.

Finally, let us examine Griffith’s "The Theory of Rupture"
to see if his approach, which is commonly characterized as an

energy approach, is inconsistent with the author’s approach.

Considering the lack of appropriate scientific knowledge to
do otherwise, Griffith confined himself to brittle solids obeying
Hooke’s Law which might contain one or more cracks. The stresses
in the solids he computed from ordinary elasticity theory
including the stress to cause rupture. The latter stress was
taken to be comparable to the intrinsic internal pressure of the
solid (meaning atomic vibration pressure sufficient to cause
vaporization) corresponding to a strain energy density for
rupture comparable to the total heat of vaporization. Rupture
would represent an enormous temperature rise in the material if
the elastic strain energy did not go into surface energy as in
the extremely large surfaces associated with disintegration
(e.g., breakage of very thin new glass rods) or, locally, not
concentrated at the end of a crack and, therefore, go into new
surface if the crack were to lengthen. 1In fact, his well-known
formula represented a crack stressed so that if it were to
lengthen a bit (rupture) equilibrium would be maintained; i.e.,
its new surface energy would come from the strain energy of the

solid and potential energy of the loads so that the total energy
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would be unchanged. Surface enerqgy density being a constant,
shorter cracks would be stable and longer ones unstable, for a

fixed loading, since the stress is greater for longer cracks.

Thus, we observe that Griffith relied on the ideal
theoretical rupture stress for both cracked and uncracked solids,
but, leaning heavily on experiments on glass, assumed that often
cracks were formed historically which weakened a solid and made
its tensile strength less but computable for simple geometries
from the ideal rupture stress or its corresponding surface energy
density and he derived his failure condition from an energy

balance.

Thus Griffith would seem to have neatly connected both
stress and energy approaches. But the crucial thing is would he
have used a'different surface energy density value than he
contemplated if he had thought of our dodge’ of making the
Griffith derivation trivial by employing internal' rather than
with external loading (and so gvoided the error in his first
paper)? We prefer to think he would have done so and so agreed

with our different K, value for internal than external loading.

L]

Making the pressure cancel the exterior loading 30 that all the loading is inside the crack makes the derivation of the Griffith formula extremely
sinpblheelhewduetomecmkial‘nplymewo:tdonebymepmwnhcrwiuvohmchuehsidemecmku-mhdmepm(m
Appeadix II).
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NOTCH SLIP LINES CRACK
ROOT

_ Transverse View of Mid-Thickness Slice Showing
Fracture Origin At Elastic-Plastic Boundary and Slip Lines.
p = 0.005 In. 350x.

FIGURE 1
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TRUE STRESS (PSIx1073)

100

20

O FRACTURE STRAIN
(actual)

7:/ B FRACTURE STRAIN
;// (calculated)
/ﬁ STRAIN RATE (SEC™)
gy A 5.6x1073 _
7 A 28x1073
= vV 9.8x 1074 _
O 2.8x 1074
- X 9.8x 1073 _
® 9.8x107°
| | I Bl | I I
| 5 10 50

TRUE STRAIN x48 (SINH ' SCALE)
from the data of (BECHTOLD)"

True stress — true strain curves for
annealed tungsten. Test temp.=523°K

FIGURE 6
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A FRACTURE MODEL: FRACTURE STRESS Sf

AMBIENT PRESSURE: p = 0

SET ONE BLOCK ON ANOTHER, LOAD, F.

FRACTURE (LOAD AND) STRESS? Sf =0,

AMBIENT PRESSURE: p > > Y

BLOCKS IN SHEATHU, LET F/A > Y,

f

P PLASTIC ELONGATION? YES.
STRESS F/A AT FRACTURE? p.
FRACTURE STRESS? Sg = 0.

e ‘ i
n n

NOTE: The mating surfaces need not be flat

19-066~1159/AMC-67

MEANING OF FRACTURE STRESS

FIGURE 7
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a) FRACTURE STRESS

= MAXIMUM STRESS
ACROSS WEAKEST PLANE,
INCLUDING HYDROSTATIC
STRESS; SAME FOR
NOTCIES.

b) LATERAL FRACTURE
STRESS MAY BE LARGE.

( R. BEEUWKES JR.)



"STRESS CONCENTRATION FACTOR %

2.5%3 2.39 2.27 2.17 2.09
5 A s G M
80 |- SULFUR LEVEL
e 0.008 %
o 0.016 %
@,
70 ® 0.025 %
a
c
~ 60—
)
x
o 50
-
b4
40—
| | | | !
900 800 700 600 400
TEMPERILNG TEMIPERATL{RE (F')l
|

200 220 240 260 280 300
TENSILE STRENGTH (Kksi)

INFLUENCE OF SULFUR ON PLANE-STRAIN FRACTURE TOUGHNESS OF 0.45C
Ni-Cr-Mo STEELS (Experiments: A. J. Birkle, R. P. Wei, and G. E.
Pellissier, U. S. Steel Corp. Theory: R. Beeuwkes, Jr. -

Fracture Stress = 285.5 + Tensile Strength; Radii x 10%, in., =
9.28, 7.83, 6.33, 4.48 for 0.008, 0.016, 0.025, 0.049 respectively.)

FIGURE 8
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Constant f Overlay

Applicable where f(=F-Y) and p do not vary
with Y(8=0).

1. Plot K vs Y data on single-cycle log-log
paper (Keuffel and Esser No. 458-100,
No. 46-7002 or equivalent — see text) with
K as ordinate.

2. Position this overlay so that its curve
best fits the data while keeping the axes
of the overlay parallel with the axes of
the paper.

3. f is the value of Y at the point where the
abscissa = 1 line of the overlay crosses
the Y axis.

4. f v/mp is one tenth of the value of K
where the ordinate = 10 line of the
overlay crosses the K axis.

10 n
0
N \
FIRST REPORT
(1.0) tJ\

™S

N

FINITE ELEMENT
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Constant F Overlay

Applicable where F and p do not vary with
Y (B=-1).

1. Plot K vs Y data on single-cycle log-
log paper (Keuffel and Esser No. 458-100,
No. 46-7002 or equivalent — see text) with
K as ordinate. .

2. Position this overlay so that its curve
best fits the data while keeping the
axes of the overlay parallel with the
axes of the paper.

3. F is the value of Y at the point where
the abscissa = 1 line of the overlay
crosses the Y axis.

4. F vmp is the value of K where the ordinate
= 1 line of the overlay crosses the K axis.

O PF-E Axes

Fan
L

0.1

FIGURE 12
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APPENDIX I

TRANSPARENT OVERLAYS

The transparent overlays are made to be used repeatedly
until worn out so long as it is desired to determine fracture
stress and effective crack tip radius by use of them from yield

strength and corresponding K, measurements.

The overlays contain a curve, or curves, each identified by
a parameter which conveys their relationship to a law relating
fracture stress to yield strength. The curves are log-log plots
of a purely mechanical stress analysis relationship existing
between K, yield strength, modulus of elasticity, Poisson’s
ratio, fracture stress, and effective crack tip radius, though
expressed simply in terms of dimensionless groupings of these
variables called L and 4 and expressed as L versus 4. This
relationship is insufficient in itself to determine fracture
stress and radius in the absence of a fracture stress law
relating fracture strength to yield strength and also a relation,
here assumed to be determined experimentally, between K, and

yield strength.

In use the overlay is laid upon a log-log plot’ of
experimental or slightly modified experimental K, versus Y data,

in such a way as to best match the data in all or part of its

L N
To the same scale used in constructing the overlay, Figures 11 & 12 niay be uscd as Uansparcat overlays using a good back light.
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range. In this position, the values of K and Y under the unit
coofdinate lines of the overlay yield the desired values of
fracture stress and radius, as described below. The match must
include at least three experimental points, for at least three
points are necessary to establish curvature which, of course,

describes the shape of a curve with a continuous slope.

The overlay curves themselves are constructed from a table
of L versus A for assumed constant values of the fracture law
parameter which is designated here by 8 and covers a practical
instructive range of -2<f<1 for the fracture law used here.

The curves are graphs of log 1/(A-B) versus log 1/[(A-$)L] and
are easily transferred to transparencies by a number of'copy
machines.” The curves are interpreted in terms of fracture

stress and radius.
Here, as always, the fracture stress is
F=Y+YA

so that

*For cxample, 2 3-M Thermofax Copicr.
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The fracture stress law is assumed to be linear in the K, Y

region being matched; i.e.,

F=(1+B)Y+f

so that

<®
"
|'=:
t
~
1
walty
1]
[
]
I

and, hence, A-f=f/Y

The abscissa on the transparency is

log 1/(A-P) =log¥Y/f=1log Y-logf

so that Y = f where Y/f = 1 and log Y/f = log 1/(4 - 8) = O.

The ordinate is

log 1/[(A-PB) L]

log [(Y/£) (K/YV=p)]

logKk-1log fymp

and

]
1

fynp where 1/[(A-B) L] =1
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Thus, if one of the 8 curves of the transparent overlay can
be matched to a log-log plot of experimental values of K, versus
Y, the value of the Y intersected by the unit coordinate line of
the overlay will be Y = £, for what is log Y on the plot is [log
Y - log £f]; i.e., 0 on the overlay when it is in the matching

position. Correspondingly and similarly, the horizontal unit

coordinate line of the overlay is where K = f/np and from this

VRp is derived by dividing out the value of f. Therefore, /np

as well as the constants 8 and f of our fracture law are known.

The overlays and graphs for the examples in the First Report
were for 8 = 0; i.e., F=Y + f, and 8§ = -1 (i.e., F = £,
independent of Y). The curves for making these overlays and the
experimental data were plotted on the largest size single cycle
log-log paper locally available that would fit into this report
with K on the vertical and Y on the horizontal scale. This size
paper and the corresponding overlays are considered so generally
useful that such overlays are included in this report and afe

called the £ (for 8 = 0) and F (for 8 = -1) overlays.

However, to make an overlay to cover the larger range of
experimental variables and ranges of 8 that may be encountered, 2
x 3 log-log paper, whose size also conforms to that of the report
had to be used. Unlike the scale of the single cyle paper above,
this selection of paper means that for this wider range the scale
is such that the Y values (plotted on the horizontal axis, as

before) increase from right to left.
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APPENDIX II
ENERGY RELATIONS IN SUPERPOSITION OF HYDROSTATIC PRESSURE

In view of the fact that, in contrast to three-dimensional
problems, in plane strain a lateral stress is required to keep the
thickness constant, and in plane stress there is no lateral stress,
it may be wondered just how the superposition of hydrostatic
pressure is to be carried out (whether lateral pressure is to be
employed). Here the superposition is taken in such a way as to
preserve the plane strain and stress conditions. Thus, to modify
the general expression for energy per unit volume in terms of the

stresses for the inclusion of hydrostatic pressure, p:
L for three dimensions add - p to each stress

] for plane stress make the stress in the thickness

direction zero and add nothing to it

L for plane strain make the stress in the thickness
direction ¢ (o, + 0,) in which o without a subscript is
Poissons’s ratio, and add p to o, and to g, including the

o, and o, in g(o, + 0,).
Each modified expression for energy is the integrand of an
integral over the volume of a body for the total energy of that

body; the part, in each case, without p is the whole energy before
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superposition of p and the part containing terms in p is the
decrease in energy caused by superposition of pressure p. The
latter consists of a simple term in p’ and a part in which the sum
of the original stresses is multiplied by p. By replacing each
such stress by its isotropic Hooke’s Law expression of the type o
= N + 2ug, it is seen that the sum represents the unit dilatation
so that the integral of this part is a constant multiplied by
pfAdv, i.e., pressure multiplied by the whole dilatation caused by

the original stresses.

This dilatation was produced by an original exterior boundary
loading stress + p since this is the p that is being eliminated on
the exterior boundéry by the hydrostatic addition of -p. The total
dilatation [AdV above is expressed in terms of the original loading
stress +p by means of a theorem in Love’s "The Mathematical Theory

of Elasticity", Article 123.

It is found that (since the crack has no volume in the
unstrained condition) the total energy contribution caused by the

hydrostatic -p addition is:

° for three dimensions -p?V/2K
Where the bulk modulus K = E/[3(1 - 20)]
. for plane stress -p’ V/2K,
where the bulk area modulus K, = E/[2(1 - 0)]

) for plane strain -p?V/2K,

Where the bulk area modulus K, = E/[2(1 - o) (1 - 20)]
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as though there was no crack at all.

Where hydrostatic pressure cancels the external load leaving
the crack under internal pressure, these simple terms are the
amounts the total original energy has decreased; what energy
remains, since the only load is now in the crack, is due to that
pressure in the crack. This energy, because displacement in the
crack is proporfional to the internal pressure, is the pressure

multiplied by half the volume it produces.

Now, consider from this background of superimposed hydrostatic
stress, Griffith’s analytical difficulty. He states, "A solution
of this problem was given in a paper read in 1920 but in the
solution there given the calculation of the strain en¢ gy was
erroneous in that the expression used for the stresses gave values
at infinity differing from the postulated uniform stress at
infinity by an amount which, though infinitesimal, yet made a
finite contribution to the energy when intregated around the
infinite boundary. This difficulty has been overcome by slightly
modifying the expressions for the stresses, so as to make this
contribution to the energy vanish, and the corrected condition for

the rupture of a thin cracked plate under a uniform pull applied in

its plane at its outer edge is R=/2ET/nc where...".*

Now suppose we have a plate containing a crack (or a hole for
that matter) under internal pressure p only, superposition of a

hydrostatic tension p on that plate will eliminate the internal
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pressure p and load the plate on its outer edge with a tension
stress acting normally to its outer edge; there are no secondary
stresses even though no limit has been put on the size or shape of
the plate. Any energy input caused by the presence of a crack is
due to the action of the original internal pressure on the sides of
the crack.” Within reason, it Qould seem that little error in this
energy input would be made if the maximum opening of the crack is
considered known, if the crack is assumed to have gone into an
ellipﬁical shape even where this is not the case; e.g., if the

cracked plate is short or narrow in comparison to the size of the

crack.
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